Insulin reduces reflex forearm sympathetic vasoconstriction in healthy humans.
نویسندگان
چکیده
Previous in vitro studies indicate that insulin modifies vascular reactivity to different agents. We have previously demonstrated that in normotensive humans physiological hyperinsulinemia is associated with an increase of forearm norepinephrine release but does not modify vascular resistance. To explore whether insulin modulates peripheral vasoconstriction induced by reflex sympathetic activation, we studied its effects on forearm hemodynamics (strain-gauge plethysmography) during graded levels of lower body negative pressure (-5, -10, -15, and -20 mm Hg, each for 5 minutes) in normotensive subjects. For this purpose, eight subjects received an intrabrachial artery infusion of regular insulin at a systemically ineffective rate (0.05 milliunits/kg per minute) so that deep-venous insulin levels increased in the experimental forearm from 16.5 +/- 2.9 to 379.6 +/- 30 pmol/L (p < 0.01), whereas arterial insulin levels remained unchanged (from 40.9 +/- 8.6 to 43.1 +/- 7.9 pmol/L, NS). In the control arm, forearm vascular resistance (units) increased from 52.3 +/- 3 to a peak of 78.4 +/- 5 (p < 0.001) during lower body negative pressure. In the insulin-exposed forearm, vascular resistance (46.4 +/- 2 at baseline) remained unchanged during insulin infusion (45.8 +/- 3, NS) and rose to a peak of 54.8 +/- 6 (p < 0.05) during lower body negative pressure. The response of forearm vascular resistance to lower body negative pressure was different in the two forearms (F = 4.506, p < 0.01, repeated-measures analysis of variance with grouping factor). Our results demonstrate that in normotensive subjects local physiological hyperinsulinemia reduces the forearm vasoconstrictive response to reflex sympathetic activation.
منابع مشابه
Vasoconstriction with norepinephrine causes less forearm insulin resistance than a reflex sympathetic vasoconstriction.
We used the insulin-perfused human forearm model to assess the effects of vasoconstriction induced with norepinephrine on the extraction of glucose in the forearm in two groups of healthy young volunteers. The norepinephrine findings were compared with a previously studied group in which vasoconstriction has been caused by reflex activation of the sympathetic nervous system. The aim of the stud...
متن کاملReflex sympathetic activation induces acute insulin resistance in the human forearm.
Inferences about the association between sympathetic overactivity and insulin resistance have been drawn from the infusion of sympathomimetic amines in supraphysiological doses. We used the isolated perfused human forearm to investigate the effect of reflex-induced sympathetic nervous system activation on the peripheral utilization of glucose in the skeletal muscles of 14 healthy men. Local hyp...
متن کاملRepeated cycles of electrical stimulation decrease vasoconstriction and axon-reflex vasodilation to noradrenaline in the human forearm.
AIM To investigate whether desensitization to the vasomotor effects of noradrenaline is a specific effect of electrical stimulation. METHODS Three sites on the forearm of 10 healthy volunteers were stimulated with 0.2 mA direct current for 2 min twice daily for 10 days. Noradrenaline and histamine were then displaced from ring-shaped iontophoresis chambers into two of the pretreated sites and...
متن کاملInteraction of cardiopulmonary and somatic reflexes in humans.
Activation of cardiopulmonary receptors with vagal afferents results predominantly in reflex inhibition of efferent sympathetic activity, whereas activation of somatic receptors reflexly increases sympathetic activity to the heart and circulation. Previous studies in experimental animals indicate that there is an important interaction between these excitatory and inhibitory reflexes in the cont...
متن کاملDifferential effects of nebivolol versus metoprolol on functional sympatholysis in hypertensive humans.
In young healthy humans, sympathetic vasoconstriction is markedly blunted during exercise to optimize blood flow to the metabolically active muscle. This phenomenon known as functional sympatholysis is impaired in hypertensive humans and rats by angiotensin II-dependent mechanisms, involving oxidative stress and inactivation of nitric oxide (NO). Nebivolol is a β1-adrenergic receptor blocker th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 21 6 Pt 2 شماره
صفحات -
تاریخ انتشار 1993